Social and Economic Networks: Models and Analysis

Learn how to model social and economic networks and their impact on human behavior. How do networks form, why do they exhibit certain patterns, and how does their structure impact diffusion, learning, and other behaviors? We will bring together models and techniques from economics, sociology, math, physics, statistics and computer science to answer these questions.

About The Course

Social networks pervade our social and economic lives.   They play a central role in the transmission of information about job opportunities and are critical to the trade of many goods and services. They are important in determining which products we buy, which languages we speak, how we vote, as well as whether or not we decide to become criminals, how much education we obtain, and our likelihood of succeeding professionally.   The countless ways in which network structures affect our well-being make it critical to understand how social network structures impact behavior, which network structures are likely to emerge in a society, and why we organize ourselves as we do.  This course provides an overview and synthesis of research on social and economic networks, drawing on studies by sociologists, economists, computer scientists, physicists, and mathematicians.

The course begins with some empirical background on social and economic networks, and an overview of concepts used to describe and measure networks.   Next, we will cover a set of models of how networks form, including random network models as well as strategic formation models, and some hybrids.   We will then discuss a series of models of how networks impact behavior, including contagion, diffusion, learning, and peer influences.

Frequently Asked Questions

Will I get a Statement of Accomplishment after completing this class?

Yes. Students who successfully complete the class (above 70 percent correct on the problem sets and final exam) will receive a Statement of Accomplishment signed by the instructor - and those earning above 90 percent credit on the problem sets and final will earn one with distinction.

Recommended Background

The course has some basic prerequisites in mathematics and statistics.  For example, it will be assumed that students are comfortable with basic concepts from linear algebra (e.g., matrix multiplication), probability theory (e.g., probability distributions, expected values, Bayes' rule), and statistics (e.g., hypothesis testing), and some light calculus (e.g., differentiation and integration).  Beyond those concepts, the course will be self-contained.