Image and video processing: From Mars to Hollywood with a stop at the hospital

In this class you will look behind the scenes of image and video processing, from the basic and classical tools to the most modern and advanced algorithms.

About The Course

What is image and video processing? Images and videos are everywhere, from those we take with our mobile devices and share with our friends to those that we receive from Mars and the ones we see in the movie theatre, without forgetting the whole ensemble of images of our bodies that are taken in hospital visits. Image and video processing is the art of working with such images and movies, from making it possible to store and transmit them to making those dark and blurry images look nice, as well as interpreting and analyzing the medical data and recognizing our friends’ faces in social pictures. This discipline is also fascinating because it uses tools from many areas of applied mathematics. In this class you will look behind the scenes of image and video processing, from the basic and classical tools to the most modern and advanced algorithms.

The course will start with an introduction to the basics of image formation and the fundamental concepts that translate a physical scene into a digital image. We will then describe the underlying concepts of image compression, the enabling technology that makes it possible for images to be sent from Mars and videos to be stored in our mobile phones. We will cover the most fundamental tools in image enhancement, showing how simple tools can significantly improve images. Both geometric and non-geometric tools as well as spatial and non-spatial operations will be presented. Details on image segmentation will be provided, one of the most fundamental and useful problems in image processing. The above topics will be extended to color images and video. Once we have covered the fundamentals, which both provide the basis for modern image and video processing and serve many important applications until today, we will move into recent progress in the area, covering image inpainting (how to remove objects from images and video), image processing via sparse modeling and compressed sensing, geometric partial differential equations for image analysis, image processing for HIV and virus research, and image processing for neurosurgery and other medical applications.

Frequently Asked Questions

  • Will I get a Statement of Accomplishment after completing this class?

    Yes. Students who successfully complete the class will receive a Statement of Accomplishment signed by the instructor.

  • What resources will I need for this class?

    The main resource needed for this class is curiosity and an appetite for learning a new topic. For those interested in pursuing some of the projects, having Matlab (with their own license) and the image processing toolbox will be very useful. However, the same projects could be performed in other programming environments available to the students.

  • What are the coolest things I'll learn if I take this class?

    How to make objects disappear in images and videos, how to see the shape of viruses, how to analyze the inside of your brain, and how we can store so many images and videos in our mobile phones.

Recommended Background

Image and video analysis can be approached from numerous areas of mathematics, from linear algebra to geometry, optimization, and differential equations. We plan to make all the lectures as self-contained as possible, but basic background in linear algebra and digital signal processing will be helpful.